第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法


第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法

干细胞EV~治疗、诊断、化妆品未来发展~

第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法




新潟大学大学院 医齿学综合研究科 消化器内科学领域 寺井崇二、土屋淳纪

再生细胞治疗的开发现况

2003年,山口大学开始了世界首个应用 "自体骨髓细胞给药疗法 "治疗肝硬化的临床研究(于2003年11月14日开始临床研究)1-4)。通过基础和临床研究表明,自体骨髓细胞移植治疗可以改善肝硬化的肝纤维化,并诱导肝硬化的肝再生。自2017年以来,有企业使用异体脂肪组织来源间充质肝细胞移植疗法来治疗失代偿期肝硬化(企业临床试验),并且目前也在进行由医生主导的失代偿期肝硬化的临床测试(图1)。

第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法

图1.

改善肝纤维化,对再生诱导起作用的细胞

2015年,新潟大学展开了旨在阐明骨髓中的有效细胞、改善肝纤维化和再生诱导机制、和以运用异体间充质干细胞为目标的研究。研究的结果表明,作为肝硬化模型治疗效果的表现机制,从外周移植的间充质干细胞主要迁移至肺部,作为 "指挥细胞"发挥作用。通过使巨噬细胞进入抗炎状态,诱导它们进入肝硬化区,可以诱导抗炎性巨噬细胞作为 "工作细胞"改善肝硬化导致的纤维化和再生(图2)5-8)。另外,我们还着眼于肺部存在的间充质干细胞与作为工作细胞的巨噬细胞的连接分子细胞外囊泡(exosomes),并进行分析。研究发现,间充质干细胞分泌的外泌体,特别是干扰素-γ刺激的间充质干细胞,可将巨噬细胞转变为抗炎性巨噬细胞,改善肝纤维化并诱导肝再生9)。此外,仅将这些外泌体施用于肝硬化模型中,就能改善肝纤维化并诱导肝再生(图3)。

第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法

图2. 



第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法

笔者改自:npj Regenerative Medicine volume 6, Article number:19(2021)

第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法

图3. 

◆临床治疗面临的挑战


为使用细胞外囊泡(exosomes)进行治疗,作为日本再生医疗学会的“外泌体等调整,治疗相关的WG委员“,目前准备开发运用新一代外泌体的治疗法。虽然已公开发表各类指南,但过去所开发的间充质干细胞等的培养过程,都建立在安全性的基础上。另外,在建立临床概念验证Proof of Concept(POC)方面,如何规定细胞外囊泡的数量和质量(内部蛋白、miRNA)也非常重要。目前已在耳鼻科领域实施First in man疗法10)。图4是将来细胞外囊泡(exosomes)的治疗蓝图。期望将来制备出能生产诱导细胞组织修复的外泌体的设计细胞,并从中获得大量外泌体,最终以细胞移植或外泌体给药于细胞的方式来进行细胞治疗。


第1回 运用间充质干细胞来源的细胞外囊泡(外泌体)开发针对肝硬化的治疗方法

图4. 



◆相关产品

MagCapture™ 外泌体提取试剂盒

PS Capture™ 外泌体流式试剂盒

EV-Up™ 间充质干细胞专用外泌体生产用培养基

◆参考文献


 1. 

Terai, S., Ishikawa, T., Omori, K., Aoyama,K., Marumoto, Y., Urata, Y., Yokoyama, Y.,Uchida, K., Yamasaki, T., Fujii, Y., Okita, K.and Sakaida, I. : Stem Cells , 24(10), 2292(2006).

 2.

Kim, J. K., Park, Y. N., Kim, J. S., Park, M. S.,Paik, Y. H., Seok, J. Y., Chung, Y. E., Kim, H. O.,Kim, K. S., Ahn, S. H., Kim, D. Y., Kim, M. J.,Lee, K. S., Chon, C. Y., Kim, S. J., Terai, S.,Salaoda, I. and Han, K. H. : Cell Transplant. ,19(10), 1237(2010).

 3.

Saito, T., Okumoto, K., Haga, H., Nishise, Y.,Ishii, R., Sato, C., Watanabe, H., Okada, A.,Ikeda, M., Togashi, H., Ishikawa, T., Terai,S., Sakaida, I. and Kawata, S. : Stem CellsDev ., 20(9), 1503(2011).

 4.

Terai, S. and Tsuchiya, A. : J. Gastroenterol. ,52(2), 129(2017).


 5.

Terai, S., Sakaida, I., Yamamoto, N., Omori,K., Watanabe, T., Ohata, S., Katada, T.,Miyamoto, K., Shinoda, K., Nishina, H. andOkita, K. : J. Biochem., 134(4), 551(2003).

 6.

Sakaida, I., Terai, S., Yamamoto, N.,Aoyama, K., Ishikawa, T., Nishina, H. and Okita, K. : Hepatology , 40(6), 1304(2004).

 7.

Watanabe, Y., Tsuchiya, A., Seino, S.,Kawata, Y., Kojima, Y., Ikarashi, S., Lewis,P. J. S, Lu, W. Y., Kikuta, J., Kawai, H.,Yamagiwa, S., Forbes, S. J., Ishii, M. andTerai, S. : Stem Cells Transl. Med ., 8 (3),271(2019).

 8.

Tsuchiya, A., Takeuchi, S., Watanabe, T.,Yoshida, T., Nojiri, S., Ogawa, M. and Terai S. :Infl amm. Regen ., 39, 18(2019).

 9.

Takeuchi, S., Tsuchiya, A., Iwasawa, T.,Nojiri, S., Watanabe, T., Ogawa, M., Yoshida, T.,Fujiki, K., Koui, Y., Kido, T., Yoshioka, Y.,Fujita, M., Kikuta, J., Itoh, T., Takamura, M.,Shirahige, K., Ishii, M., Ochiya, T., Miyajima, A.and Terai, S. : NPJ Regen. Med ., (1), 19 (2021).

10.

Warnecke, A., Prenzler, N., Harre, J., Köhl, U.,Gärtner, L., Lenarz, T., Laner-Plamberger, S.,Wietzorrek, G., Staecker, H., Lassacher, T.,Hollerweger, J., Gimona, M. and Rohde, E. :J. Extracell. Vesicles , 10(8), e12094(2021).

间充质干细胞来源外泌体产生用无血清培养基的研发


间充质干细胞来源外泌体产生用无血清培养基的研发

外泌体再生医学的实现之路

间充质干细胞来源外泌体产生用无血清培养基的研发

富士胶片和光纯药株式会社 生命科学研究所

丸谷祐树、山根昌之

◆前言

细胞外囊泡(Extracellular vesicle : EV)是由细胞释放的脂质双分子层包被的膜囊泡,作为细胞间的通讯工具发挥作用。外泌体属于EV的一种,被认为参与多种生物功能的控制,并有望用作疾病生物标记物或治疗制剂。在治疗制剂的应用方面,具有抗炎和抗纤维化作用的间充质干细胞(Mesenchymal stem cell:MSC)来源外泌体备受瞩目,其未来的实用性被寄予厚望。对MSC来源外泌体实际应用的期望不断提升,同时外泌体作为治疗制剂的生产技术研发也在积极进行。

本文将介绍由FUJIFILM Wako自主研发的无血清培养基,在生产用于治疗的MSC来源外泌体方面的实用性。

 

◆MSC来源外泌体

以CD9、CD63和CD81等作为标记蛋白的外泌体,由细胞释放的、直径在30-100 nm左右的脂质双分子层包被的膜囊泡,含有蛋白、核酸(DNA、mRNA、miRNA)、脂质等细胞来源成分1,2)。另外,MSC来源于中胚层的成体干细胞,能够从骨髓、脂肪、脐带等组织中建立,具有分化为脂肪、骨骼和软骨的功能。除此之外,MSC还具有诱导抗炎、抗纤维化或免疫抑制等旁分泌效应,近年来有人提出这些作用是由外泌体引起的3)。在此背景下,将MSC来源外泌体作为治疗制剂的关注度急剧攀升。

 


◆MSC来源外泌体产生用无血清培养基的研发背景

关于在产生MSC来源外泌体时所用的培养基,起初使用的是几种添加了不含牛来源外泌体的胎牛血清(EV-depleted FBS)的基础培养基4,5)。然而,这些组分均以维持MSC存活为目的,能够优化外泌体分泌和生物活性效果的组分尚未研发成功。

为此我们研发了一款可为MSC产生外泌体提供适宜的环境的无血清、无动物培养基,即为可同时维持高性能和高生物活性的EV-Up™基础培养基及补充剂(下称EV-Up™培养基)。

 


◆使用EV-Up™培养基培养获得的外泌体产量及活性

EV-Up™培养基的推荐使用方法是,在任意的增殖培养基中培养至80-90%汇合,然后更换培养基并培养 3-5 天(图1)。从血清培养基更换为无血清培养基时,多数情况下都需要进行驯化操作,但在含FBS的血清培养基中增殖的细胞,也能够直接更换EV-Up™培养基培养。

间充质干细胞来源外泌体产生用无血清培养基的研发

图1. EV-Up™培养基的建议操作流程

           在任意的增殖培养基中培养至80-90%汇合后,更换至EV-Up™培养基。然后培养 3-5 天,回收培养上清。可以通过PS亲和法从回收的培养上清液中回收外泌体。

 


在血清培养基中使骨髓来源的MSC增殖,然后更换至含EV-depleted FBS的基础培养基或EV-Up™培养基中,检测培养5天后的细胞数和细胞生存率。结果显示,细胞数和细胞生存率均维持在较高的状态下(图2 – A、B)。

间充质干细胞来源外泌体产生用无血清培养基的研发

图2. 使用EV-Up™培养基培养MSC的细胞生存率

更换至EV-Up™培养基5天后,测得的细胞数(A)和细胞生存率(B)。

 


接着,利用纳米粒子追踪分析法(NTA)比较使用PS亲和法纯化的外泌体粒子数6)。结果表明,使用EV-Up™培养基获得的外泌体,其粒子数约为使用含EV-depleted FBS的基础培养基的2.6倍(图3A)。进一步通过基于PS亲和法外泌体定量技术的PS ELISA比较外泌体产量,可确认和粒子数一样,外泌体标记蛋白CD9、CD63 和CD81都有所增加6,7)(图3 B)。

间充质干细胞来源外泌体产生用无血清培养基的研发

图3. 比较使用EV-Up™培养基培养后的外泌体粒子数及外泌体标记蛋白

从各培养基中取培养上清1 mL,通过NTA比较获得的外泌体粒子数(A)以及通过PS ELISA分析外泌体标记的结果(B)。

最后,评估对人胎肺来源正常成纤维细胞(TIG3)的纤维化抑制效果,以比较在各培养基中培养的MSC来源外泌体的生物活性。结果表明,相比常规使用的基础培养基和含EV-depleted FBS的培养基,采用EV-Up™培养基培养的MSC来源外泌体具有更好的抗纤维化效果(图4)。

间充质干细胞来源外泌体产生用无血清培养基的研发

图4. 比较使用EV-Up™培养基培养后的外泌体生物活性(抗纤维化活性)

向TGFβ刺激的人胎儿肺源性成纤维细胞(TIG3细胞)中添加PS亲和法纯化的外泌体5×108 particles/mL,

利用Real-Time PCR法定量纤维化标记(αSMA,Collagen Ⅲ)的基因表达,比较抗纤维化活性。           

 


以上结果显示,EV-Up™培养基可以高产量制备维持高生物活性的MSC来源外泌体,是一款创新性的培养基。

 

◆结语

此次我们研发的EV-Up ™培养基是针对MSC优化的无血清、无动物来源的外泌体生产用培养基,不仅能提升高活性外泌体的产量,因其无血清、非动物源,还可能有助于提高治疗制剂开发过程中的质量稳定性。今后使用外泌体作为治疗制剂的应用化将会在世界范围内不断发展,期待我们研发的培养基作为实用的生产技术工具得到广泛运用。

〔参考文献〕


1) Colombo, M. et al. : Annu. Rev. Cell Dev. Biol., 30, 255(2014).

2) Mathieu, M. et al. : Nat. Cell Biol., 21(1), 9(2019).

3) Phinney, D. G. and Pittenger, M. F. : Stem Cells, 35(4), 851(2017).

4) Rajendran, R. L. et al. : Sci. Rep., 7(1), 15560(2017).

5) Lai, R. C. et al. : Stem Cell Res ., 4(3), 214(2010).

6) Nakai, W. et al. : Sci. Rep., 6, 33935(2016).

7) Ma, Y. et al. : Sci. Rep., 11(1), 13471(2021).

◆相关产品

产品编号

产品名称

等级

包装

053-09451

EV-Up™ EV Production Basal Medium for MSC, AF
EV-Up™ 间充质干细胞外泌体生产用基础培养基,无动物源成分

细胞培养用

95 mL

298-84001

EV-Up™ MSC EV Production Supplement, AF
EV-Up™ 间充质干细胞外泌体生产用添加剂,无动物源成分

细胞培养用

5 mL(100 mL用)

294-84101

MagCapture™ Exosome Isolation Kit PS Ver.2
MagCapture™外泌体提取试剂盒PS Ver.2

基因研究用

2 tests

290-84103

基因研究用

10 tests

相关文章

EV-Up™ 间充质干细胞专用外泌体生产用培养基

MagCapture™ 外泌体提取试剂盒 PS Ver.2