低温泡沫杜瓦瓶 Spearlab Cryogenic Foam Dewars

低温泡沫杜瓦瓶 Spearlab Cryogenic Foam Dewars
Spearlab Cryogenic Foam Dewars
Spearlab Dewars
Spearlab Cryogenic Foam Dewars
HR4-662 Cryogenic Foam Dewar (500 ml) – Small  500ml规格
Spearlab Cryogenic Foam Dewars
HR4-675 – Spearlab Cryogenic Foam Dewar (2 liter)  2L规格
低温泡沫杜瓦瓶 Spearlab Cryogenic Foam Dewars

Applications 应用

    Cryocrystallography 蛋白结晶学

Features

  Each dewar is supplied with a lid  每个杜瓦瓶都配有盖子

  Proprietary foam construction (USPTO # 7,971,744)

  Mini (130 ml), Small (500 ml), Standard (800 ml), Large (1400 ml) and Tall (1800 ml)

   Reduced ice formation on dewar lip

  Easier to dry

   Foam construction reduces slipping

Description
Spearlab FD-130 Cryogenic Foam Dewar (130 ml) – Mini : Small, hexagonal outside, hand held foam dewar, maximum volume 175 ml. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 2 inches in diameter by 3.5 inches deep, so that it easily holds 130 ml and a maximum volume of 175 ml of liquid nitrogen. The HR4-676 has an overall height of approximately 4.5 inches without cover and the width is 3.5 inches at the top and 3.75 inches on the bottom (measured on the flats of the hexagon). Circular cover is approximately 0.5 inches tall x 3.5 inches diameter.

Spearlab Cryogenic Foam Dewar (500 ml) – Small: The small foam dewar shape is circular, with a protruding handle, so that it resembles a large teardrop. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 4.5 inches in diameter by 2.8 inches deep, so that it easily holds 500 ml of liquid nitrogen.

Spearlab FD-800 Cryogenic Foam Dewar (800 ml) – Standard: The standard foam dewar shape is circular, with a protruding handle, so that it resembles a large teardrop. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 5.8 inches in diameter by 2.8 inches deep, so that it easily holds 800 ml of liquid nitrogen.

Spearlab FD-1400 Cryogenic Foam Dewar (1400 ml) – Large: The large foam dewar shape is circular, with a protruding handle, so that it resembles a large teardrop. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 6.3 inches in diameter by 3.8 inches deep, so that it easily holds 1400 ml of liquid nitrogen. Overall height is approximately 6 inches without cover and the width is 9 inches on the short axis and 11 inches on the long axis. Cover approximately 0.5 inches tall x 9 inches diameter.

Spearlab FD-1800 Cryogenic Foam Dewar (1800 ml) – Tall: The tall foam dewar shape is a tapered octagon on the outside with a cylindrical interior. The tapered octagon features a wide, stable base. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 3.5 inches in diameter by 12.5 inches deep, so that it holds approximately 1,800 ml of liquid nitrogen. The outside dimensions of the tall dewar are 15.25 inches tall with a 6.25 inches wide top and a 7.75 inches wide base (measured on the flats of the octagon). The cover is 6.5 inches in diameter and 0.5 inches thick.

The patented (USPTO # 7,971,744) design of the Spearlab Cryogenic Foam Dewar makes it easy to handle and safer to use than a traditional low profile glass dewar. Also, because of its lower thermal mass, a foam vessel will cause less boil off when it is filled with liquid nitrogen. Additionally, the dewar will accumulate less frost during regular use. The end result is that less liquid nitrogen is consumed.

The dewars are made from cross-linked polyethylene foam. A density of 4 pounds per cubic foot is used for the 130 ml and 800 ml dewars. A density of 2 pounds per foot is used for the 1400 ml and 2 liter dewars. The higher density foam has significantly higher mechanical strength and stiffness. The lower density foam has slightly lower thermal conductivity. Like most lightweight insulation materials, the thermal conductivity of the foam is predominantly determined by the thermal conductivity of air, which eventually permeates the pores of the foam material.

CAT NO NAME DESCRIPTION
HR4-676 Cryogenic Foam Dewar (130 ml) – Mini each
HR4-662 Cryogenic Foam Dewar (500 ml) – Small each
HR4-673 Cryogenic Foam Dewar (800 ml) – Standard each
HR4-674 Cryogenic Foam Dewar (1400 ml) – Large each
HR4-675 Cryogenic Foam Dewar (2 liter) – Tall each

Hampton 蛋白结晶向导管Wizard Tube

Wizard Tube 
The Wizard™ Classic line of random sparse matrix screens is designed to increase your probability of producing crystals during the coarse screening phase when crystallizing biological macromolecules (proteins, nucleic acids, peptides, and combinations thereof).
The Wizard Classic reagents are proven to be a highly effective starting point in the screening of biological macromolecules. The Wizard Classic formulations include a large range of crystallants, buffers, and salts covering a broad range of crystallization space at pH levels from pH 4.5 to pH 10.5.Choose from Wizard Classic 1, 2, 3, or 4 non-overlapping formulations in matrix blocks or tubes.

图片

Wizard Cubic LCP
The tools in the Wizard Cubic LCP (lipidic cubic phase) Kit enable researchers to prepare LCP-type crystallizations by hand. Ideal for low-protein experiments: effective protein volume for a single crystallization experiment is about 80 nanoliters. Wizard Cubic LCP Kit tools work especially well when traditional methods have failed to yield crystals. Lipidic cubic phase has worked well for the crystallization of 7TM membrane proteins (proteins with seven transmembrane helices). Four out of six GPCRs (G-protein coupled receptors), an important membrane protein class, and several microbial 7TM proteins have been crystallized using the LCP approach.

图片

CRYO (I、II)
The Wizard Cryo™ line of random sparse matrix screens is designed for scientists who want to avoid the additional step of optimizing a cryoprotectant condition. Every Wizard Cryo formulation flash-freezes to a clear, amorphous glass in liquid nitrogen or in a cryo-stream at 100K. Crystals can be frozen directly from their growth drops, avoiding the additional step of pre-equilibration with an artificial cryo-condition that can damage the crystal. Eleven different cryocrystallants and sparing use of glycerol ensures a broad sampling of possible cryo conditions. Choose from Wizard Cryo 1 or 2 formulations in tubes or Wizard Cryo 1 and 2 together in a 96-well matrix block.

图片

Hampton CrystalEX Second Generation (Corning)

Hampton CrystalEX Second Generation (Corning)

Crystal<i>EX</i> Second Generation (Corning)

CrystalEx Plates

Applications

   Sitting drop crystallization

Features

96 well sitting drop plate
Round and conical flat bottom drop well shapes
1, 2 or 4 microliter drop wells
1, 3 or 5 drop wells per reservoir
Hydrophilicity treated or untreated
PZero or COC plate material–UV imaging compatible

Description

The second generation of Corning® 96 Well, sitting drop format plates are built to SBS specifications, making them well suited for high throughput crystallization and are fully compatible with robotic equipment. The plates are available in several different configurations with varying drop well shapes, plate materials, and number of drop wells per reagent well. The basic plate design is one reagent well flanked by one or three drop wells, with SBS standard spacing between the centers of adjacent well clusters. One may choose a plate with small (1 µl), medium (2 µl), or large (4 µl) drop well volumes. The choice of round or conical flat well shapes are available. The PZero polymer provides for zero background polarization and is non-birefringent. PZero plates are not treated. The COC polymer offers high chemical resistance. Both types of plastic feature improved transparency. The reservoir numbers are embossed on each individual well for easy identification. Drop well locations conform to SBS standards for robotic handling. The low-volume reagent well saves on reagent costs. The plates can be sealed using Crystal Clear Sealing Film (HR3-609), 3 inch wide Crystal Clear Sealing Tape (HR4-506) or ClearSeal Film™ (HR4-521).

Corning has discontinued 3557 – special pricing and limited inventory available for this item only.

CAT NO NAME DESCRIPTION
HR8-135 Corning 3556 4µl round drop well, 1 drop well, COC, untreated – 10 plate case
HR8-134 Corning 3556 4 µl  round drop well, 1 drop well, COC, untreated – 40 plate case
HR8-137 Corning 3551 4 µl conical flat drop well, 1 drop well, COC, treated – 10 plate case
HR8-136 Corning 3551 4µl conical flat drop well, 1 drop well, COC, treated – 40 plate case
HR8-139 Corning 3552 2 µl round drop well, 3 drop well, COC, untreated – 10 plate case
HR8-138 Corning 3552 2µl  round drop well, 3 drop well, COC, untreated – 40 plate case
HR8-141 Corning 3553 2 µl conical flat drop well, 3 drop well, COC, untreated – 10 plate case
HR8-140 Corning 3553 2 µl conical flat drop well, 3 drop well, COC, untreated – 40 plate case
HR8-147 Corning 3550 1µll conical flat drop well, 3 drop well, COC, untreated – 10 plate case
HR8-146 Corning 3550 1µl conical flat drop well, 3 drop well, COC, untreated – 40 plate case
HR8-160 Corning 3557 1 µl conical flat drop well, 5 drop well, PZero – 10 plate case
HR8-158 Corning 3557 1 µl conical flat dro p well, 5 drop well, PZero – 40 plate case

Hampton 48孔坐滴蛋白结晶板 48-Well Crystallization Plate

Hampton 48孔坐滴蛋白结晶板 48-Well Crystallization Plate
Applications

Sitting drop crystallization
Features

One drop per reservoir
SBS format
48 well plate
9 mm standard distance between wells
Drop volume: Up to 10 µl
Reservoir volume: 50 to 200 µl
Micro-numbering alongside drop volumes
Rigid plate structure
Wide partition walls between wells improve sealing
Developed in conjunction with the MRC Laboratory of Molecular Biology in Cambridge, United Kingdom
UV compatible (UVP)
Description
MRC Maxi 48-Well Crystallization Plate for Automated Optimization

The MRC Maxi optimization plate is a breakthrough for macromolecular crystallization presented in a 48 well format. Offering easy to automate crystallization optimization with large sitting-drops, the new MRC Maxi Crystallization plate is the perfect solution. Manufactured by Swissci AG, the plate offers an SBS format while providing 48 wells. MRC Maxi is intended for large drops and is compatible both with standard robotic systems as well as manual pipetting.

The plate was developed at the MRC Laboratory of Molecular Biology (Cambridge, UK) in collaboration with Jan Löwe and Fabrice Gorrec. It is a result of many years of experience in successful robotic high-throughput crystallization and complements the original MRC crystallization plate, which is intended for smaller drop volumes and higher throughput during screening.

Drop volumes of up to 10 µl are possible. The 9 mm standard distance between wells is preserved, enabling the use of multi-channel manual pipettes and robotic liquid handlers, making MRC Maxi one of the most automation-friendly optimization plates on the market.

MRC Maxi is covered by global intellectual property and design registration as are the Swissci AG MRC 2 lens 96 well plates. Several breakthrough features of the original MRC plate have been maintained. Wells are labeled individually. Drops are raised for easy access during crystal retrieval. MRC Maxi uses the same proprietary polymer specially selected for the purpose of UV light visualization and the material used keeps through-plastic evaporation to a minimum. Well shapes are spherical but shallow.

The MRC Maxi Crystallization plate offers unique properties that make it the ideal choice for microliter-sized optimization experiments and is made from UV compatible UVP.

The advantages of the MRC Maxi Crystallization plate – in brief

Easy Crystal Retrieval
Raised wide wells make the crystal mounting especially easy.

Easy Viewing
The wells are wide conical.
Each well has a micro lens for perfect illumination.
Micro numbering readable under the microscope for each well.
The optically superior polymer (UVP) is UV transmissible.

Better Sealing
Wide partition walls between the wells give plenty of area for good sealing with tape.

Very Rigid, Automation-Friendly Plate Design
The UVP polymer reduces through-plastic evaporation to a minimum.

SBS Standard
The plates are designed to the SBS standard and are compatible with all common holders.
9 mm distance from well-to-well within columns, 18 mm distance within rows.

Unique Polymer (UVP)
Ultra-low sample binding.
No static charging.

Recommended Volumes
Volumes validated for MRC Maxi are up to 10 µl of sample drop and 200 µl of the crystallization reagent.

CAT NO NAME DESCRIPTION
HR3-179 MRC Maxi 48-Well Crystallization Plate 10 plate case
HR3-180 MRC Maxi 48-Well Crystallization Plate 40 plate case