聚丙烯酰胺凝胶电泳原理以及注意事项-技术文章

聚丙烯酰胺凝胶电泳原理以及注意事项

聚丙烯酰胺凝胶电泳简称为PAGE(Polyacrylamide?gel?electrophoresis)聚丙烯酰氨凝胶电泳,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。

聚丙烯酰胺凝胶电泳作用:

用于分离蛋白质和寡核苷酸。

聚丙烯酰胺凝胶电泳原理:

常用的催化聚合方法有两种:化学聚合和光聚合。化学聚合通常是加入催化剂过硫酸铵(AP)以及加速剂四甲基乙二胺(TEMED),四甲基乙二胺催化过硫酸铵产生自由基。溶液的pH对聚合作用是重要的,因为过低pH没有足够的碱基加速催化反应,同样过多的氧分子存在,会使聚合作用很快停止。所以制备凝胶时,在加过硫酸铵之前,混合物必须抽去空气。核黄素催化的聚合作用,常用于制备浓缩胶,因为这样制得的凝胶孔度要大些。核黄素在光照射下及有微量氧存在时,产生自由基使Acr发生聚合作用。

聚丙烯酰胺凝胶的孔径可以通过改变丙烯酰胺和甲叉双丙烯酰胺的浓度来控制,丙烯酰胺的浓度可以在3%-30%之间。低浓度的凝胶具有较大的孔径,如3%的聚丙烯酰胺凝胶对蛋白质没有明显的阻碍作用,可用于平板等电聚焦或SDS-聚丙烯酰胺凝胶电泳的浓缩胶,也可以用于分离DNA;高浓度凝胶具有较小的孔径,对蛋白质有分子筛的作用,可以用于根据蛋白质的分子量进行分离的电泳中,如10%-20%的凝胶常用于SDS-聚丙烯酰胺凝胶电泳的分离胶。选择T和C的经验公式是:C = 6.5-0.3T此式可用于计算T为5%~20%时的凝胶组成。C值并不很严格,在大多数情况下,可变化的范围约为 1%,当C保持恒定时,凝胶的有效孔径随着T的增加而减小,当T保持恒定,C为4%时,有效孔径最小,C大于或小于4%时,有效孔径均变大,C大于5%时凝胶变脆,不宜使用,实验中最常用的C是2.6%和3%。

聚丙烯酰胺凝胶的优点:

1、可以随意控制胶浓度“T”和交联度“C”,从而得到不同的有效孔径,用于分离不同分子量的生物大分子。( x%

2、能把分子筛作用和电荷效应结合在同一方法中,达到更高的灵敏度:10-9 ~10-12 mol/L。

3、由于聚丙烯酰胺凝胶是由-C-C-键结合的酰胺多聚物,侧链只有不活泼的酰胺基-CO-NH2,没有带电的其他离子基团,化学惰性好,电泳时不会产生“电渗”。

4、由于可以制得高纯度的单体原料,因而电泳分离的重复性好。

5、透明度好,便于照相和复印。机械强度好,有弹性,不易碎,便于操作和保存。

6、无紫外吸收,不染色就可以用于紫外波长的凝胶扫描作定量分析。

7、还可以用作固定化酶的惰性载体。

聚丙烯酰胺胶电泳体系有二种:连续体系与不连续体系。前者指整个电泳体系中所用的缓冲液成分、PH、凝胶网都相同;后者指在电泳体系中采用两种以上的缓冲液、PH值和孔径。按电泳装置不同又可分为垂直管状(圆盘)电泳和垂直平板电泳。这两种电泳操作方式基本相同,不同的只是用于凝胶的支架或为玻璃管,或为玻璃板。这里以最常用的不连续体系的管型盘状电泳为例,说明凝胶分离蛋白质的机理。

nunc