CYTO-ID® 自噬检测试剂盒 CYTO-ID® Autophagy detection kit


产品编号 产品名称 产品规格 产品等级 产品价格
ENZ-51031-K200 Cyto-ID® Autophagy detection kit CYTO-ID®自噬检测试剂盒 200 tests
ENZ-51031-0050 Cyto-ID® Autophagy detection kit CYTO-ID®自噬检测试剂盒 50 tests
  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

CYTO-ID® 自噬检测试剂盒CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit

  CYTO-ID® Autophagy Detection Kit使用新型染料检测自噬小泡和监控活细胞自噬流,选择性标记积累的自噬小泡。染料已通过优化,不染溶酶体,在自噬前体、自噬体和自噬溶酶体里呈现出明亮的荧光。该试剂盒提供了一种无需细胞转染,可以在活细胞中监控细胞自噬的快速定量方法。

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit

CYTO-ID® Autophagy Detection Kit

◆特点

  ● 无需转染,定量监测活细胞中的自噬情况

  ● 免去LC3-GFP转染所需的时间和精力以及转染效率的验证

  ● 含有特殊基团的专利染料选择性地染色自噬小泡

  ● 试剂盒中包含已知活性的自噬抑制剂与激活剂

  ● 快速量化原生异质性细胞群中的自噬

  ● 选择性地全方位染色,可检测和区分自噬流(autophagic flux)和自噬溶酶体的积累

  ● 不染溶酶体,减少其他染料的背景干扰

   便于高通量筛选自噬激活剂和抑制剂

◆原理


  该产品所用探针是阳离子两亲性示踪剂(CAT)染料,以类似诱导磷脂药物的方式迅速进入到细胞中。染料的功能基团能够选择性标记与自噬通路相关的小泡,而不会在溶酶体中聚集。


  胞内物质被扩大的膜囊包裹,吞噬泡形成双层膜囊泡,成为自噬体。自噬体外膜随后与溶酶体融合,和内部物质被自噬性溶酶体降解。自噬的各种调节因子也被描绘于图中。

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit

自噬原理图

◆应用


省时省力,无需转染即可自快速全面的标记自噬小泡


  为了演示CYTO-ID® Green detection reagent的优势,先用RFP-LC3表达载体转染HeLa细胞, 10μM的Tamoxifen处理过夜,然后用CYTO-ID® 绿色检测试剂染色。LC3转染法需要过夜,而CYTO-ID® 绿色检测试剂的方法在15-30分钟内标记细胞达100%。图A:绿信号显示自噬小泡的CYTO-ID® 绿染;图B:成功转染细胞的RFP-LC3表达(红色);图C:自噬体的特异性标记LC3,与CYTO-ID® 绿色染料标记的小泡共定位的复合图像。

的发放

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit




无转染的自噬检测


  Hela细胞进行饥饿与恢复,然后使用CYTO-ID® Green detection reagent标记。染料可以明确检测和量化自噬及与自噬诱导相关的自噬小泡前体。图1A:稳定表达GFP-LC3的CHO细胞,结果显示对照组与饥饿的细胞群的相对较差的基线分离,自噬难以量化。图1B:CYTO-ID® Autophagy Detection Kit特异性标记LC3蛋白依赖的自噬小泡,免去转染操作。

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit


自噬积累和自噬流的可视化


  可用荧光显微镜观察CYTO-ID® 自噬绿色染料检测的自噬液泡积累和自噬流。Hela细胞用以下试剂进行模拟诱导,0.2% DMSO(A)和100μM  Clonidine hydrochloride(B)进行诱导,5μM Loperamide hydrochloride和1 μM PP242 hydrate(D)在37°C诱导12小时。处理后,细胞在37℃下用CYTO-ID® Green Detection reagent孵育10分钟,再用分析缓冲液清洗。细胞核被Hoechst 33342染料复染为蓝色。

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit


避免非特异性溶酶体染色的背景干扰


  相比其他MDC染色溶酶体检测,CYTO-ID® 绿色染料无溶酶体染色背景,CYTO-ID® Autophagy kit无需紫外活细胞分析,在显微镜共标记应用中,与Hoechst染料兼容。

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit


使用流式细胞仪通过CYTO-ID® Autophagy Detection Kit分析自噬


  对照组(红线峰值)无诱导,10 uM Tamoxifen (ALX-550-095)处理Jurkat细胞(白血病T细胞)(蓝线峰值)。处理18小时后,细胞结合CYTO-ID® 绿色检测试剂,然后不经过流式细胞仪清洗,进行分析。结果通过直方图呈现。对照组细胞被染色,但荧光亮度低。实验组中,CYTO-ID® 绿色荧光信号增加约2倍,表明Tamoxifen处理能引起Jurkat细胞中自噬的增加。


CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit

  使用mTOR激酶抑制剂Rapamycin处理HepG2细胞孵育过夜,结果显示CYTO-ID® 染色信号升高。

CYTO-ID® 自噬检测试剂盒                  CYTO-ID® Autophagy detection kit

CYTO-ID® 绿色染料大多与RFP-LC3蛋白共定位。0.1μM Rapamycin(典型自噬诱导剂)处理过夜,转染Hela细胞表达RFP-LC3。A: CYTO-ID® Green染色; B: RFP-LC3; C: 合成图像。

CYTO-ID® 自噬检测试剂盒 2.0http:///product/show/735.html

◆相关产品

产品编号

产品名称

规格

备注

应用

ENZ-51002-25

GFP-Certified®Apoptosis/Necrosis detection kit

细胞凋亡/坏死检测试剂盒

25 assays

多重检测,区分正常、

早期凋亡、晚期凋亡和坏死细胞,与GFP和其他绿色荧光探针兼容。

FC,荧光显微镜,荧光检测

ENZ-51002-100

100 assays

ENZ-51021-K200

Nuclear-ID®Green

hromatin condensation detection kit

细胞核绿色染色体皱缩检测试剂盒

 

1 Ki

高渗透性的绿色荧光染色增强了细胞凋亡诱导染色质固缩。

 

FC,荧光显微镜,荧光检测

ENZ-52406

NUCLEAR-ID®Red DNA stain

DNA染色试剂盒(红色荧光)

200 µl

细胞可渗透的DNA染色应用广泛。

≥93%(HPLC),FC,荧光检测

ENZ-CHM103-0200

Nuclear-ID®Blue

DNA stain   (GFP-Certified®)

Nuclear   ID®蓝色DNA染色(GFP细胞系)

200 µ

细胞可渗透的DNA染色应用广泛。

≥93%(HPLC),FC,荧光检测

ENZ-51015-KP002

Lyso-ID®Red

cytotoxicity kit   (GFP-Certified®)

溶酶体细胞毒理检测试剂盒(红色荧光)(绿色细胞系)

1 Kit

快速,定量和HTS-兼容的检测活细胞毒性试剂。

荧光显微镜,荧光检测

ENZ-51035-0025

ProteoStat®Aggresome   etection kit

蛋白内稳态® 聚集体 检测 试剂盒

25 tests

Robust、定量的聚集小体用于神经退行性疾病,肝病和毒理学研究

FC,荧光显微镜,荧光检测

ENZ-51035-K100

100 tests

 


 



处理

目的

效果

μM

诱导时间 (hrs)

细胞系

饥饿

抑制哺乳动物Rapamycin (mTOR)

激活自噬

N/A

1~4

HeLa, HepG2, Jurkat

Rapamycin

抑制哺乳动物Rapamycin (mTOR)

激活自噬

0.2

6~18

HeLa, Jurkat

PP242

mTOR ATP-竞争性抑制剂

激活自噬

1

18

HeLa

Lithium

抑制IMPase 和降低inositol 和IP3水平; mTOR依赖性

激活自噬

10,000

18

HeLa, Jurkat

Trehalose

未知, mTOR依赖性

激活自噬

50,000

6

HeLa, Jurkat

Bafilomycin A1

抑制 Vacuolar-ATPase

抑制自噬

6~9*10-3

18

HeLa, Jurkat

Chloroquine

碱化 Lysosomal pH

抑制自噬

10~50

18

HeLa, Jurkat

Tamoxifen

增加细胞内 ceramide的水平和消除PI3K的抑制效果

激活自噬

4~10

6~18

HeLa, HepG2, Jurkat

Verapamil

钙离子通道阻滞剂;降低胞浆内Ca2+水平; mTOR依赖性

激活自噬

40~100

18

HeLa, Jurkat

HydroxyChloroquine

Alkalinizes Lysosomal pH

抑制自噬 

10

18

HeLa, Jurkat

Loperamide

Ca2+ 通道阻滞剂;降低胞浆内 Ca2+浓度; mTOR依赖性

激活自噬

5

18

HeLa

Clonidine

咪唑啉-1受体激动剂; 降低 cAMP 水平; mTOR依赖性

激活自噬

100

18

HeLa

MG-132

选择性蛋白酶抑制剂

激活自噬

2~5

18

HeLa, Jurkat

Norclomipramine

碱化Lysosomal pH

抑制自噬

5-20

18

HeLa

Epoxomicin

选择性蛋白酶抑制剂

诱导聚集体

0.5

18

HeLa

Velcade®

选择性蛋白酶抑制剂

诱导聚集体

0.5

18

HeLa

Amyloid beta peptide 1-42

引起氧化应激

诱导聚集体

25

18

SK-N-SH

Cyto-ID®检测试剂盒 Q&A


Q:Cyto-ID®自噬检测试剂与活细胞孵育的最长时间是多少(几分钟/几小时/几天)?
A:我们建议37℃孵育不超过30 分钟。很多实验表明,孵育1 小时不会伤害细胞。孵育超过1 小时,一些细胞看
上去状态不好。


Q:是否可用荧光显微镜观察3D 培养细胞的自噬?
A:我们没有用该染料染过3D 细胞,但是一小撮细胞是可以染色的。活体组织的话,由于染料的渗透性不好,不
能进入样本的内部,所以效果不理想。染白细胞是可以。


Q:用双重染料染在37℃孵育30 分钟后,细胞状态不好开始皱缩。有些细胞也从板上脱离,阳性对照和DMSO
对照没有观察到特异性染色。

A:对于比较敏感的细胞,优化流程如下:
1. 使用PBS/5%FBS 或者完全培养基作为assay buffer,最好不含酚红。
2. 如果细胞状态仍然不好,建议染色时间缩短至15~20 分钟。
3. 减少染料的浓度至1000×稀释。需要显微镜观察时延长荧光照射的时间。
4. 可能光褪色会导致信号模糊。建议使用封片剂防止光褪色。


Q:用流式检测的话,样品在用Cyto-ID®自噬检测试剂孵育后多久可用流式观察?操作手册是说30 分钟。是否可
以在检测之前短暂的将样品放置在冰上?

A:可以将样品放在冰上延长孵育的时间。一般的经验法则,尽可能缩短活细胞与染料的结合。缺氧,低温或者其
他应激状态也可以诱导自噬。


Q:GFP-CertifiedTM 细胞凋亡/坏死检测试剂盒(ENZ-51002),Cyto-ID®自噬检测试剂盒(ENZ-51031)是否可以
同时染色,检测细胞凋亡,坏死和自噬?

A:GFP-CertifiedTM 细胞凋亡/坏死检测试剂盒(ENZ-51002)和Cyto-ID®检测试剂盒(ENZ-51031)不能配合使
用,因为细胞凋亡和自噬检测的染料都发绿色荧光。这两个试剂盒可以平行使用。比如,用十字孢碱
(Staurosporine)处理细胞,一部分样品用GFP-CertifiedTM 细胞凋亡/坏死检测试剂盒检测,一部分样品用
Cyto-ID®检测试剂盒检测。


Q:Cyto-ID®自噬检测试剂盒(ENZ-51031) 的Cyto-ID®自噬检测试剂能否与ProteoStat®蛋白聚集检测
(ENZ-51023)的ProteoStat®检测试剂联合使用?

A:Cyto-ID®绿色自噬检测试剂与ProteoStat®检测试剂发的荧光颜色不同,他们可用于同一实验,客户需要优化
实验流程。

Q:Cyto-ID®自噬检测试剂的原理是什么?
A:染料是申请专利的。该染料是阳离子两性示踪剂(CAT)染料,跟很多阳离子化合物一样可以快速进入细胞。
染料穿过细胞膜双分子层后被动扩散,不需要蛋白结合或者转运子活性。可滴定部分的筛选使的染料不会再溶
酶体聚集,能够标记自噬通道相关的液泡。另外,染料的发射光密度增强后可以标记自噬液泡相关片层膜结构。
我们可以提供染料染自噬液泡的相关数据。
诱导自噬溶酶体,比如用氯喹或者baflimyocin 处理后,会导致荧光变亮(250~300%)。雷帕霉素诱导自
噬后能够用3-MA 抑制。在EBSS 中氨基酸缺乏会导致1 小时后在自噬液泡中染料的积累,这种积累是可逆的
(补充营养后即可恢复)。我们有一系列用于研究自噬的化合物(Screen-Well®Autophagy library)


Q:与单丹磺酰尸胺(MDC)相比,Cyto-ID®自噬检测试剂有哪些优势?
A:MDC 需要365nm UV 荧光照明,与通常流式配置的488n 激发源不兼容。Cyto-ID®自噬染料是488nm激发
波长,绿色的发射荧光,可以高亮自噬通道不同的液泡成分。需要注意的是,与lysomotrophic 染料不同,
MDC,LysoTrackerTMRed,吖啶橙主要是染溶酶体的,Cyto-ID®自噬染料只能染一点点溶酶体,主要是染自
噬溶酶体和早期自噬部分的选择标记物。


Q:与GFP-LC3 转染细胞相比,Cyto-ID®自噬检测试剂盒(ENZ-51031)的优势是什么?
A:Cyto-ID®检测试剂盒(ENZ-51031)的最大优势是不用转染细胞。转染很短暂,不同实验需要再购买相关试剂。
由于细胞过表达,会导致GFP-LC3 聚集,结果呈假阳性。转染效率低于100%,有些细胞不会表达必要的GFP
组件。该试剂盒检测的自噬,细胞群的一致性会更好。不需要每个细胞系都进行转染。也可以标记原代细胞。
原代细胞不容易进行转染。


Q:有哪些细胞系或者原代细胞可用Cyto-ID®自噬检测试剂?
A:用该试剂盒见检测过的代表性的细胞和细胞系包括肝细胞,SK-N-SH 神经瘤细胞,CHO 细胞,骨肉瘤来源细
胞,黑素留细胞,乳腺癌细胞,宫颈癌细胞,卵巢癌细胞,B 淋巴瘤细胞,结肠癌细胞,HepG 细胞,Jurkat T
细胞,牛大动脉内皮细胞(BAEC)。


Q:Cyto-ID®自噬检测试剂能否与其他染料配合使用,区分细胞核内体和自噬内涵体?
A:Cyto-ID®红色长期示踪剂染料(ENZ-51037)能够染细胞质膜,通过细胞内吞存在于细胞中。Cyto-ID®红色
染料与Cyto-ID®自噬检测试剂能够高亮异体吞噬vs 自噬。也可以Cyto-ID®自噬检测试剂与Lyso-ID®红色染
料或者LysoTrackerTM 红色染料进行活细胞染色,荧光显微镜观察。


Q:Cyto-ID®自噬检测试剂的稳定性如何?
A:荧光染料会发生光褪色,但是这种染料比荧光素更稳定。按照操作手册出来荧光染料。

Q:Cyto-ID®自噬检测试剂盒染色后是否可固定细胞?
A:在操作手册中提供了固定细胞的流程。不推荐用表面活性剂给细胞打孔,定位的荧光染料丢失。


Q:活细胞检测时,荧光信号强度可维持多长时间?
A:细胞诱导后发生自噬,在分析前染色。诱导时间少于1 小时或者诱导几天,诱导时间取决于自噬诱导剂。我们
没有在活细胞上进行长时间的染色,有客户发现可以至少染色24 小时。

参考文献

A comparison of strategies for immortalizing mouse embryonic fibroblasts: M.M. St. Amad, et al.; J. Biol. Methods 3, e41 (2016), Application(s): Detected autophagy induction in SV40 transformed versus serially passed MEFs, 全文

Astemizole-Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosis: R. Jakhar, et al.; Cancer Lett. 372, 89 (2016), Application(s): Flow cytometry analysis, 摘要;

Atg5 Is Essential for the Development and Survival of Innate Lymphocytes: T.E. O'Sullivan, et al.; Cell Rep. 15, 1910 (2016), Application(s): Liver lymphocytes were harvested and stained with cell surface antibodies and then incubated with 1:400 Cyto-ID Autophagy Detection Reagent, 摘要全文

Autophagy-related gene 5 and Wnt5 signaling pathway requires differentiation of embryonic stem cells into odontoblast-like cells: N. Ozeki, et al.; Exp. Cell Res. 341, 92 (2016), Application(s): Autophagy flux, 摘要;

DHA-induced stress response in human colon cancer cells-focus on oxidative stress and autophagy: K. Pettersen, et al.; Free Radic. Biol. Med. 90, 158 (2016), Application(s):Autophagy determined by flow cytometry, 摘要;

Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells: S. Jiang, et al.; Phytomedicine 23, 243 (2016),Application(s): Confocal immunofluorescence, 摘要;

Efavirenz causes oxidative stress, endoplasmic reticulum stress, and autophagy in endothelial cells: M. Weiss, et al.; Cardiovasc. Toxicol. 16, 90 (2016), 摘要;

MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells: M.J. Nyhan, et al.; BMC Cancer 16, 101 (2016), Application(s): Assay used to stain live cells, 摘要全文

(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose: C. Li, et al.; Am. J. Physiol. Endocrinol. Metab. 309, E302 (2015), Application(s):Confocal microscopy using mouse podocytes, 摘要;

A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications: S. Guo, et al.; Autophagy11, 560 (2015), Application(s): Fluorescent detection, Microplate Reader , 摘要全文

A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis: R. Liang, et al.; PLoS Genet. 11, e1005526 (2015), Application(s):Autophagy flux measured by flow cytometry , 摘要全文

ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells: R.K. Balvers, et al.; J. Transl. Med. 13, 74 (2015),Application(s): Assay, 摘要全文

Activation of autophagy in response to nanosecond pulsed electric field exposure: J.C. Ullery, et al.; Biochem. Biophys. Res. Commun. 458, 411 (2015), Application(s):Fluorescence microscopy using U937 monocyte and CHO-K1 cell lines, 摘要;

Aflatoxin biosynthesis is a novel source of reactive oxygen species-a potential redox signal to initiate resistance to oxidative stress?: L.V. Roze, et al.; Toxins (Basel). 7, 1411 (2015),Application(s): Assay, 摘要全文

Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells: F. Wang, et al.; Drug Des. Devel. Ther. 9, 575 (2015), Application(s): Flow cytometry using PANC-1 and BxPC-3 pancreatic cancer cell lines, 摘要全文

Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer: Y.H. Ding, et al.; Drug Des. Devel. Ther. 9, 425 (2015), Application(s): Flow cytometry using SKOV3 and OVCAR-4 ovarian cancer cell lines, 摘要全文

Andrographolide Analogue Induces Apoptosis and Autophagy Mediated Cell Death in U937 Cells by Inhibition of PI3K/Akt/mTOR Pathway: D. Kumar, et al.; PLoS One 10, e0139657 (2015), Application(s): Flow cytometric analysis of Cyto-ID Green Detection Reagent , 摘要全文

Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells: F. Lang, et al.; PLoS One 10, e0129196 (2015),Application(s): Live Cell Imaging, 摘要全文

Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling: M.R. Akl, et al.; Mar. Drugs 13, 288 (2015), Application(s): Flow cytometry using BT-474 breast cancer cell line, 摘要全文

Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy: C.K. Domigan, et al.; J. Cell. Sci. 128, 2236 (2015), 摘要;

Autophagy is activated in systemic lupus erythematosus and required for plasmablast development: A.J. Clarke, et al.; Ann. Rheum. Dis. 74, 912 (2015), 摘要全文

Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia: A.S. Watson, et al.; Cell Death Discov. 1, 15008 (2015), Application(s): CytoID assay in human and mouse HSCs, 摘要全文

Baicalin inhibits autophagy induced by influenza A virus H3N2: H.Y. Zhu, et al.; Antiviral Res. 113, 62 (2015), Application(s): Fluorescence microscopy using A549 human lung cancer cell line, 摘要;

Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells: Y.Y. Wang, et al.; Drug Des. Devel. Ther. 9, 993 (2015), Application(s): Flow Cytometry, 摘要全文

Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation: S.J. Yu, et al.; PLoS One 10, e0121393 (2015), Application(s): Flow cytometry of THP-1 leukemia cell line, 摘要全文

Chemoproteomics Reveals Novel Protein and Lipid Kinase Targets of Clinical CDK4/6 Inhibitors in Lung Cancer: N.J. Sumi, et al.; ACS Chem. Biol. 10, 2680 (2015),Application(s): Quantification of autophagosomes, 摘要;

Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms: S. Hwang, et al.; PLoS One 10, e0128519 (2015), Application(s):Fluorescence microscopy using hemocytes from Japanese rhinoceros beetle Allomyrina dichotoma larvae, 摘要全文

Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells: Y.N. Liu, et al.; Toxicon. 95, 30 (2015), Application(s): Fluorescence microscopy using HepG2 cell line, 摘要;

Clozapine induces autophagic cell death in non-small cell lung cancer cells: Y.C. Yin, et al.; Cell. Physiol. Biochem. 35, 945 (2015), 摘要;

Coffee and caffeine potentiate the antiamyloidogenic activity of melatonin via inhibition of Aβ oligomerization and modulation of the Tau-mediated pathway in N2a/APP cells: L.F. Zhang, et al.; Drug Des. Devel. Ther. 9, 241 (2015), Application(s): Flow Cytometry,摘要全文

Combination of the mTOR inhibitor RAD001 with temozolomide and radiation effectively inhibits the growth of glioblastoma cells in culture: H. Burckel, et al.; Oncol. Rep. 33, 471 (2015), 摘要;

Danusertib Induces Apoptosis, Cell Cycle Arrest, and Autophagy but Inhibits Epithelial to Mesenchymal Transition Involving PI3K/Akt/mTOR Signaling Pathway in Human Ovarian Cancer Cells: D. Zi, et al.; Int. J. Mol. Sci. 16, 27228 (2015), Application(s): Confocal fluorescence microscopy, 摘要全文

Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells: C.X. Yuan, et al.; Drug Des. Devel. Ther. 9, 1293 (2015), Application(s): Flow cytometry using AGS and NCI-N78 gastric cancer cell lines, 摘要全文

Defective autophagy in vascular smooth muscle cells alters contractility and Ca²⁺ homeostasis in mice: C.F. Michiels, et al.; Am. J. Physiol. Heart Circ. Physiol. 308, H557 (2015), 摘要;

Effects of cyclodextrins on GM1‐gangliosides in fibroblasts from GM1‐gangliosidosis patients: Y. Maeda, et al.; J. Pharm. Pharmacol. 67, 1133 (2015), 摘要;

Endurance exercise training induces fat depot-specific differences in basal autophagic activity: G. Tanaka, et al.; Biochem. Biophys. Res. Commun. 466, 512 (2015),Application(s): Detect the formation of autophagosomes, 摘要;

Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis: C.M. Xie, et al.; J. Cell. Biol. 209, 721 (2015), 摘要;

Evaluation of Antitumor Effects of Folate-Conjugated Methyl-β-cyclodextrin in Melanoma: K. Motoyama, et al.; Biol. Pharm. Bull. 38, 374 (2015), Application(s): Fluorescence Microscopy, 摘要全文

Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy: A.C. Laurent, et al.; Cardiovasc. Res. 105, 55 (2015), Application(s):Fluorescence microscopy using rat neonatal ventricular myocytes, 摘要;

Glutathione-S-transferase omega 1 (GSTO1-1) acts as mediator of signaling pathways involved in aflatoxin B1-induced apoptosis-autophagy crosstalk in macrophages: S. Paul, et al.; Free Radic. Biol. Med. 89, 1218 (2015), Application(s): Determination of autophagy with immunocytochemistry , 摘要;

GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells: I.L. Hsin, et al.; Mol. Pharm. 12, 1534 (2015), 摘要;

Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells: Z.W. Zhou, et al.; Drug Des. Devel. Ther. 9, 1511 (2015), Application(s): Assay, 摘要全文

Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation: N. Orfali, et al.; Exp. Hematol. 43, 781 (2015), Application(s): Flow cytometry analysis of NB4 and HL60 promyelocytic leukemia cell lines, 摘要;

Inhibition of Autophagy Potentiated the Antitumor Effect of Nedaplatin in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells: Z. Liu, et al. ; PLoS One 10, e0135236 (2015),Application(s): Cell culture, 摘要全文

Inhibition of mitotic Aurora kinase A by alisertib induces apoptosis and autophagy of human gastric cancer AGS and NCI-N78 cells: C.X. Yuan, et al.; Drug Des. Devel. Ther. 9, 487 (2015), Application(s): Flow cytometry using AGS and NCI-N78 gastric cancer cell lines, 摘要全文

Interferon Regulatory Factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate: J.L. Schwartz-Roberts, et al.; Cancer Res.75, 1046 (2015), 摘要;

Interplay of Oxidative Stress and Autophagy in PAMAM Dendrimers-Induced Neuronal Cell Death : Y. Li, et al.; Theranostics 5, 1363 (2015), Application(s): Confocal fluorescence assay, 摘要全文

Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation: B. Pei, et al.; J. Immunol. 194, 5872 (2015), 摘要;

Involvement of fish signal transducer and activator of transcription 3 (STAT3) in nodavirus infection induced cell death: Y. Huang, et al.; Fish Shellfish Immunol. 43, 241 (2015),Application(s): Fluorescence microscopy of Grouper (fish) brain cells, 摘要;

Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma?: H. Wu, et al.; Biomaterials 62, 47 (2015), Application(s): Fluorescence microscopy using U251 human glioma cell line, 摘要;

Kaposi's sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1: O. Gjyshi, et al.; J. Virol. 89, 2268 (2015), 摘要;

KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models: I. Riz, et al.; Oncotarget 6, 17814 (2015), Application(s):FACS, 摘要全文

Lithium modulates autophagy in esophageal and colorectal cancer cells and enhances the efficacy of therapeutic agents in vitro and in vivo: T.R. O'Donovan, et al.; PLoS One 10, e0134676 (2015), Application(s): Flow cytometry analysis using human esophageal and murine colon cancer cell lines, 摘要全文

Methicillin-Resistant Staphylococcus aureus Adaptation to Human Keratinocytes: G. Soong, et al.; MBio. 6, e00289-15 (2015), Application(s): Assay, 摘要全文

Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy: T.P. Miettinen, et al.; Cell Rep. 13, 2610 (2015), Application(s): Flow cytometry analysis of autophagy using Jurkat, U2OS, Kc167 and HUVEC cells, 摘要;

MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib: S. Jagannathan, et al.; Leukemia 29, 727 (2015), Application(s): Detection of autophagy by fluorescence microscopy in multiple myeloma cell lines, 摘要全文

Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma: M.A. Abdel Malek, et al.; Oncotarget 6, 3098 (2015), Application(s): Confocal Microscopy, 摘要全文

Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor: H. Tindwa, et al.; Dev. Comp. Immunol. 51, 88 (2015), Application(s): Fluorescence microscopy using hemocytes from Tenebrio molitor larvae, 摘要;

Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress: I. Khan, et al.; Sci. Rep. 5, 10581 (2015), Application(s): Fluorescence microscopy autophagy assay, 摘要全文

N-Myc and STAT Interactor regulates autophagy and chemosensitivity in breast cancer cells: B.J. Metge, et al.; Sci. Rep. 5, 11995 (2015), Application(s): Fluorescent detection,摘要全文

Novel autophagy inducers lentztrehaloses A, B and C: S.I. Wada, et al.; J. Antibiot. (Tokyo)68, 521 (2015), Application(s): Fluorescence microscopy using Mewo melanoma and OVK18 ovarian cancer cell lines, 摘要;

Novel small-molecule SIRT1 inhibitors induce cell death in adult T-cell leukaemia cells: T. Kozako, et al.; Sci. Rep. 5, 11345 (2015), Application(s): Flow cytometry using a variety of cancer cell lines, 摘要全文

Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study: N. Niu, et al. ; Drug Des. Devel. Ther. 9, 4441 (2015),Application(s): Autophagy of human macrophages by flow cytometry, 摘要;

Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells: N. Sugimori, et al.; PLoS One 10, e0120709 (2015), Application(s): Flow cytometry using HL60 leukemia cell line, 摘要全文

Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells: S.T. Pan, et al.; Drug Des. Devel. Ther. 9, 1601 (2015), Application(s): Assay, 摘要全文

Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway: N.K. Niu, et al.; Drug Des. Devel. Ther. 9, 1555 (2015), Application(s): Assay,摘要全文

Reduced FoxO3a expression causes low autophagy in idiopathic pulmonary fibrosis fibroblasts on collagen matrix: J. Im, et al.; Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L552 (2015), 摘要;

S-Adenosyl-L-methionine-competitive inhibitors of the histone methyltransferase EZH2 induce autophagy and enhance drug sensitivity in cancer cells: T.P. Liu, et al.; Anticancer Drugs 26, 139 (2015), Application(s): Fluorescence microscopy using MDA-MB-231 breast cancer cell line, 摘要全文

Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: implications for its hepatotoxicity: Y. Zhang, et al.; Drug Des. Devel. Ther. 9, 2001 (2015), Application(s): Flow cytometry using AML-12 hepatocyte and RAW 264.7 leukemia cell lines, 摘要全文

Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy: Q. Tan, et al.; Cancer Sci. 106, 1023 (2015), 摘要;

The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells: W.B. Fang, et al.; Breast Cancer Res. Treat. 150, 309 (2015), 摘要;

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells: J.P. Li, et al.; Drug Des. Devel. Ther. 9, 1627 (2015),Application(s): Assay, 摘要全文

The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells: J.P. Li, et al.; Drug Des. Devel. Ther. 9, 1027 (2015), Application(s): Assay, 摘要全文

The role of autophagy in the cytotoxicity induced by recombinant human arginase in laryngeal squamous cell carcinoma: C. Lin, et al.; Appl. Microbiol. Biotechnol. 99, 8487 (2015), 摘要;

A Novel CXCR3-B Chemokine Receptor-induced Growth-inhibitory Signal in Cancer Cells Is Mediated through the Regulation of Bach-1 Protein and Nrf2 Protein Nuclear Translocation : M. Balan & S. Pal; J. Biol. Chem. 289, 3126 (2014), Application(s): Monitor autophagy in MCF-7 and T47D breast cancer cells by flow cytometry and fluorescence microscopy, 摘要;

Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis: K.Y. Huang, et al.; Biochim. Biophys. Acta. 1840, 53 (2014), 摘要;

Autophagy in the brain of neonates following hypoxia-ischemia shows sex-and region-specific effects: S.N. Weis, et al.; Neuroscience 256, 201 (2014), 摘要;

Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium: L.C. Koay, et al.; Am. J. Physiol. Gastrointest. Liver Physiol. 307, G140 (2014),Application(s): Detection of autophagy in human colonic epithelial cell line Caco-2 by Confocal imaging, 摘要全文

Caveolin-1 Is a Critical Determinant of Autophagy, Metabolic Switching, and Oxidative Stress in Vascular Endothelium: T. Shiroto, et al.; PLoS One 9, e87871 (2014), 摘要;全文

Connective tissue diseases: How do autoreactive B cells survive in SLE-autophagy?: N.J. Bernard; Nat. Rev. Rheumatol. 10, 128 (2014), (Review), 摘要;

Defective Autophagosome Trafficking Contributes to Impaired Autophagic Flux in Coronary Arterial Myocytes Lacking CD38 Gene: Y. Zhang, et al.; Cardiovasc. Res. 102, 68 (2014),摘要;

Defects in mitochondrial clearance predispose human monocytes to interleukin-1β hyper-secretion: R. van der Burgh, et al.; J. Biol. Chem. 289, 5000 (2014), 摘要全文

Early biomarkers of response to carfilzomib in multiple myeloma (MM): Modulation of CXCR4 and induction of autophagy: M. Bhutani, et al.; J. Clin. Oncol. 32, e19572 (2014),Application(s): Quantification of autophagy in malignant plasma cells from bone marrow aspirates by flow cytometry with the Cyto-ID autophagy detection kit,

Enhancement of dynein-mediated autophagosome trafficking and autophagy maturation by ROS in mouse coronary arterial myocytes: M. Xu, et al.; J. Cell. Mol. Med. 18, 2165 (2014), 摘要全文

Flow Cytometric Analysis of Autophagic Activity with Cyto-ID Staining in Primary Cells: M. Stankov, et al.; Bio-Protocol (2014), Application(s): FC in primary BMDCs, 全文

High-Content Assays for Hepatotoxicity Using Induced Pluripotent Stem Cell-Derived Cells: O. Sirenko, et al.; Assay Drug Dev. Technol. 12, 43 (2014), 摘要全文

Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy: M.V. Stankov, et al.; Leukemia 28, 577 (2014), 摘要;

Histone deacetylase inhibitors potentiate VSV oncolysis in prostate cancer cells by modulating NF-κB dependent autophagy: L. Shulak, et al.; J. Virol. 88, 2927 (2014),摘要;

In vitro and in vivo characterization of porcine acellular dermal matrix for gingival augmentation procedures: A.M. Pabst, et al.; J. Periodontal. Res. 49, 371 (2014), 摘要;

Inhibition of Autophagic Flux by Salinomycin Results in Anti-Cancer Effect in Hepatocellular Carcinoma Cells: J. Klose, et al.; PLoS One 9, e95970 (2014),Application(s): Autophagy detection in human hepatocellular carcinoma , 摘要全文

Inhibition of stress induced premature senescence in presenilin-1 mutated cells with water soluble Coenzyme Q10: D. Ma, et al.; Mitochondrion 17C, 106 (2014), Application(s):Autophagic vacuoles in Alzheimer's Disease fibroblasts detected with CytoID® Green Autophagy Detection kit, 摘要;

Involvement of autophagy in recombinant human arginase-induced cell apoptosis and growth inhibition of malignant melanoma cells: Z. Wang, et al.; Appl. Microbiol. Biotechnol.98, 2485 (2014), 摘要;

MiR-216a: a link between endothelial dysfunction and autophagy: R. Menghini, et al.; Cell Death Dis. 5, e1029 (2014), 摘要;

Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells: E. Wolmarans, et al.; Cell. Mol. Biol. Lett. 19 , 98 (2014), Application(s): Autophagy detection in esophageal carcinoma SNO cell , 摘要;

Novel sorafenib-based structural analogues: in-vitro anticancer evaluation of t-MTUCB and t-AUCMB: A.T. Wecksler, et al.; Anticancer Drugs 25, 433 (2014), 摘要;

Photodynamic therapy with the novel photosensitizer chlorophyllin f induces apoptosis and autophagy in human bladder cancer cells: D. Lihuan, et al.; Lasers Surg. Med. 46, 319 (2014), 摘要;

Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells: Y.C.Li, et al.; Cancer Lett. 344, 239 (2014), 摘要;

Potential of adenovirus-mediated REIC/Dkk-3 gene therapy for use in the treatment of pancreatic cancer: D. Uchida, et al.; J. Gastroenterol. Hepatol. 29, 973 (2014), 摘要;

Sirt1 modulates endoplasmic reticulum stress-induced autophagy in heart: A. Guilbert, et al.; Cardiovasc. Res. 103 (suppl 1), S13 (2014), Application(s): Evaluation of Autophagy in H9c2 cells, rat cardiomyoblasts by flow cytometry, 全文

STAT3 down regulates LC3 to inhibit autophagy and pancreatic cancer cell growth: J. Gong, et al.; Oncotarget 5, 2529 (2014), Application(s): Autophagic vacuole formation was detected by microscopy and autophagosome formation was determined by flow cytometry in human pancreatic cancer cells Capan-2, 摘要全文

T-Cell Autophagy Deficiency Increases Mortality and Suppresses Immune Responses after Sepsis: C.W. Lin, et al.; PLoS One 9, e102066 (2014), Application(s): Quantification of autophagosomes and autolysosomes staining in CD4+ and CD8+ cell population by flow cytometry , 摘要全文

Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition: A. Brüning, et al.; Exp. Cell Res. 320, 281 (2014), 摘要;

The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells: K. Rothe, et al.; Blood 123, 3622 (2014), Application(s): Monitor autophagy flux in hematopoietic stem/progenitor cells, 摘要;

Androgen deprivation and androgen receptor competition by bicalutamide induce autophagy of hormone-resistant prostate cancer cells and confer resistance to apoptosis: B. Boutin, et al.; Prostate 73, 1090 (2013), Application(s): Measurement of autophagic flux in prostate cancer cells, 摘要;

Arenobufagin, a natural bufadienolide from toad vonem, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway: D.M. Zhang, et al.; Carcinogenesis 34, 1331 (2013), Application(s): Autophagy detection in hepatocellular carcinoma, 摘要;

Autophagy Plays a Critical Role in ChLym-1-Induced Cytotoxicity of Non-Hodgkin's Lymphoma Cells: J. Fan, et al.; PLoS One. 8, e72478 (2013), 摘要全文

BCL-2 inhibitors sensitize therapy-resistant chronic lymphocytic leukemia cells to VSV oncolysis: S. Samuel, et al.; Mol. Ther. 21, 1413 (2013), 摘要;

Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells: H. Bugaut, et al.; PLoS One 8, e65181 (2013),Application(s): Measurement of autophagy by flow cytometry and fluorescence microscopy, 摘要全文

Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress: K. Suzuki, et al.; Neuro. Oncol. 15, 1186 (2013), 摘要;

Chloroquine Engages the Immune System to Eradicate Irradiated Breast Tumors in Mice: J.A. Ratikan, et al.; Int. J. Radiat. Oncol. Biol. Phys. 87, 761 (2013), 摘要;

Dietary Resveratrol Prevents Development of High-Grade Prostatic Intraepithelial Neoplastic Lesions: Involvement of SIRT1/S6K Axis: G. Li, et al.; Cancer Prev. Res 6, 27 (2013), Application(s): Effects of Resveratrol on prostate tumorigenesis, 摘要;

Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes: Y.M. Wei, et al.; Cell. Physiol. Biochem. 31, 925 (2013), 摘要全文

GX15-070 (obatoclax) induces apoptosis and inhibits cathepsin D and L mediated autophagosomal lysis in antiestrogen resistant breast cancer cells: J.L. Schwartz-Roberts, et al.; Mol. Cancer Ther. 12, 448 (2013), Application(s): Autophagy detection in breast cancer cells, 摘要;

Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: A possible mechanism for therapeutic modulation of T cells: J. van Loodregt, et al.; J. Allergy Clin. Immunol. 131, 1443 (2013), Application(s): Detection of autophagy in CD4+ T cells and PBMC by flow cytometry , 摘要全文

Interactions between autophagic and endo-lysosomal markers in endothelial cells: C.L. Oeste, et al.; Histochem. Cell. Biol. 139, 659 (2013), 摘要;

Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin: R. Onodera, et al.; Int. J. Pharm. 452, 116 (2013), Application(s):Measurement of autophagy by fluorescence microscopy, 摘要;

ISG15 deregulates autophagy in genotoxin-treated ataxia telangiectasia cells: S.D. Desai, et al.; J. Biol. Chem. 288, 2388 (2013), Application(s): Fluorescence microscopy using Ataxia Telangiectasia cells, 摘要全文

Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: Implications for glaucoma pathogenesis: K. Porter, et al.; Autophagy 9, 581 (2013), Application(s): Autophagy detection by flow cytometry in porcine TM cells,摘要全文

Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation: A. Brüning; Mol. Oncol. 7, 1012 (2013), 摘要;

Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkin's lymphoma cells: X. Zeng, et al.; Cell Death Dis. 4, e840 (2013), 摘要;全文

Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes: M. Xu, et al.; Biochim. Biophys. Acta. 1833, 3228 (2013),摘要;

Renal cancer-selective Englerin A induces multiple mechanisms of cell death and autophagy: R.T. Williams, et al.; J. Exp. Clin. Cancer Res. 32, 57 (2013), Application(s):Flow cytometry and immunofluorescence of a human kidney carcinoma cell line, 摘要;全文

Saxifragifolin D induces the interplay between apoptosis and autophagy in breast cancer cells through ROS-dependent endoplasmic reticulum stress: J.M. Shi, et al.; Biochem. Pharmacol. 85, 913 (2013), Application(s): Autophagy detection by flow cytometry in breast cancer cells, 摘要;

Suppression of autophagy enhanced growth inhibition and apoptosis of interferon-β in human glioma cells: Y. Li, et al.; Mol. Neurobiol. 47, 1000 (2013), 摘要;

Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage: A.V. Knizhnik, et al.; PLoS One 8, e55665 (2013), Application(s): Autophagy detection by flow cytometry in glioma cells, 摘要全文

The effect of Zhangfei on the unfolded protein response and growth of cells derived from canine and human osteosarcomas: T. Bergeron, et al.; Vet. Comp. Oncol. 11, 140 (2013),Application(s): Detection of autophagy in human and canine osteosarcoma, 摘要;

The mTOR inhibitor RAD001 potentiates autophagic cell death induced by temozolomide in a glioblastoma cell line: E. Josset, et al.; Anticancer Res. 33, 1845 (2013), 摘要;

Therapeutic Combination of Nanoliposomal Safingol and Nanoliposomal Ceramide for Acute Myeloid Leukemia: T.J. Brown, et al.; J. Leuk. 1, 110 (2013), Application(s):Detection of autophagy by flow cytometry in Human HL-60 , HL-60/VCR, and murine C1498 cells, 全文

Type I interferons induce autophagy in certain human cancer cell lines: H. Schmeisser, et al.; Autophagy 9, 683 (2013), Application(s): Autophagy detection in type I interferon-treated human cancer cell lines, 摘要;

A novel image-based cytometry method for autophagy detection in living cells: L.L. Chan, et al.; Autophagy 8, 1371 (2012), 摘要全文

Apoptosis and autophagy have opposite roles on imatinib-induced K562 leukemia cell senescence: C. Drullion, et al.; Cell Death Dis. 3, e373 (2012), Application(s): Flow cytometry of human CML cells treated with Imatinib, 摘要全文

Counteracting autophagy overcomes resistance to everolimus in mantle cell lymphoma: L. Rosich, et al.; Clin. Cancer Res. 18, 5278 (2012), 摘要全文

Heme Oxygenase-1 Promotes Survival of Renal Cancer Cells through Modulation of Apoptosis-and Autophagy-regulating Molecules: P. Banerjee, et al.; J. Biol. Chem. 287, 4962 (2012), Application(s): Detection of autophagy in human renal cancer cells, 摘要;

Inhibition of monocarboxylate transporter 2 induces senescence-associated mitochondrial dysfunction and suppresses progression of colorectal malignancies in vivo: I. Lee, et al.; Mol. Cancer Ther. 11, 2342 (2012), 摘要全文

Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF: T.W. Bodnarchuk, et al.; J. Neurooncol. 109, 485 (2012),Application(s): Detection of autophagy in medulloblastoma cells, 摘要;

Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic: D.M. Arduíno, et al.; Hum. Mol. Genet. 21, 4680 (2012), 摘要全文

Proteasome inhibition by quercetin triggers macroautophagy and blocks mTor activity: A.K. Klappan, et al.; Histochem. Cell Biol. 137, 25 (2012), 摘要;

Reovirus as a viable therapeutic option for the treatment of multiple myeloma: C.M. Thirukkumaran, et al.; Clin. Cancer Res. 18, 4962 (2012), Application(s): Detection of autophagy in human myeloma cell lines and ex vivo tumor specimens, 摘要;

Src inhibition with saracatinib reverses fulvestrant resistance in ER-positive ovarian cancer models in vitro and in vivo: F.A. Simpkins, et al.; Clin. Cancer Res. 18, 5911 (2012),Application(s): Detection of autophagy in human ovarian cancer cells and xenografts,摘要;

FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy: B. Pandit, et al.; Cell Cycle 10, 3269 (2011), Application(s):Flow cytometry using human cancer cells, 摘要全文

Monitoring of autophagy in Chinese hamster ovary cells using flow cytometry: J.S. Lee, et al.; Methods 56(3), 375 (2011), 摘要;

Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4: H.M. Warenius, et al.; Mol. Cancer 10, 72 (2011),摘要;

Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells: H. Kauntz, et al.; Apoptosis16, 1042 (2011), 摘要;

 

jQuery(“.nltabbox”).slide({effect:”fade”});